博客
关于我
一个简单的神经网络数字识别实现(入门级)
阅读量:352 次
发布时间:2019-03-04

本文共 1072 字,大约阅读时间需要 3 分钟。

图像识别模型简化实现

本文将展示一个简化版的图像识别模型,基于多层感知机(MLP)实现简单的图像分类任务。以下将简要介绍模型的实现细节、训练过程以及测试效果。

模型实现

模型采用三个典型的全连接层结构,分别对应输入层、隐藏层和输出层。以下是模型的主要实现细节:

  • 输入层:784个神经元,接收图像的像素信息。
  • 隐藏层:200个神经元,负责信息的中间处理。
  • 输出层:10个神经元,代表分类的结果。
  • 激活函数

    模型使用 sigmoid 函数作为激活函数,其定义如下:[ \sigma(x) = \frac{e^x}{e^x + 1} ]该函数将实数映射到区间 [0, 1],便于后续的训练和分类。

    权重初始化

    • 输入层到隐藏层的权重矩阵大小为 (200, 784),通过 numpy.random.normal 随机生成,均值为 0,标准差为 ( \frac{1}{\sqrt{784}} )。
    • 隐藏层到输出层的权重矩阵大小为 (10, 200),同样通过 numpy.random.normal 随机生成,均值为 0,标准差为 ( \frac{1}{\sqrt{200}} )。

    学习率

    设置学习率为 0.1,通过小批量数据进行迭代训练。

    训练过程

    数据加载

    训练数据加载从文件中读取 CSV 格式的数据集。每行数据包含一个目标标签和对应的图像像素信息。

    数据预处理

    将图像像素值归一化到 [0.01, 1] 范围内,确保训练数据与测试数据一致。

    模型训练

    模型采用批量梯度下降算法,训练 100 个 epochs,每个 epoch 遍历所有训练数据。网络权重通过反向传播和误差调整更新。

    误差计算

    输出层误差通过误差链反向传播到隐藏层,计算各层节点的误差梯度,更新权重矩阵。

    测试过程

    测试数据加载

    加载测试图片文件,确保图片格式为 28x28 的 PNG 格式。

    预测结果

    将测试图片的像素信息输入模型,输出预测分类结果。

    注意事项

  • 训练数据路径:需要根据实际数据存储路径进行修改。
  • 测试图片路径:将 r'C:\Users\dell\Desktop\6.png' 替换为实际的测试图片路径。
  • 图片格式要求:确保测试图片为 28x28 像素,常用 Windows 自带的画图软件可以编辑。
  • 运行效果

    在 Jupyter Notebook 中运行时,训练准确率可达 70%以上。如需更高准确率,可通过调整网络结构(增加隐藏层节点数或优化激活函数)进行优化。

    本文的代码和实现方法为入门级开发者提供了一个基础的图像分类模型框架,适合用于快速实现和测试。

    转载地址:http://aazh.baihongyu.com/

    你可能感兴趣的文章
    NSError 的使用方法
    查看>>
    NSGA-Ⅲ源代码
    查看>>
    nsis 安装脚本示例(转)
    查看>>
    NSJSON的用法(oc系统自带的解析方法)
    查看>>
    nslookup 的基本知识与命令详解
    查看>>
    NSOperation基本操作
    查看>>
    NSRange 范围
    查看>>
    NSSet集合 无序的 不能重复的
    查看>>
    NSURLSession下载和断点续传
    查看>>
    NSUserdefault读书笔记
    查看>>
    NS图绘制工具推荐
    查看>>
    NT AUTHORITY\NETWORK SERVICE 权限问题
    查看>>
    NT symbols are incorrect, please fix symbols
    查看>>
    ntelliJ IDEA 报错:找不到包或者找不到符号
    查看>>
    NTFS文件权限管理实战
    查看>>
    ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
    查看>>
    ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
    查看>>
    ntp server 用法小结
    查看>>
    ntpdate 通过外网同步时间
    查看>>
    ntpdate同步配置文件调整详解
    查看>>